

CONDITION MONITORING SOLUTIONS

The Sentry G3 Machinery Protection Monitor is a high performance signal conditioning unit; providing a universal platform for the interfacing of various sensor types in compliance with the API 670 standard. Each of the four channels can be independently programmed to provide continuous monitoring and protection facilities broad across а spectrum measurement regimes (including vibration, expansion, temperature, speed, etc). Utilising the latest DSP technology, once a channel is set up and running, the resulting alarm relay and analogue output facilities are independent from the remaining module functionality, resulting in a scalable high integrity configuration.

The module is provided with an intuitive colour LCD display and drive facility to provide immediate viewing and access to the machine parameters. Several modes of display are available including bar graph, FFT and an alarm historian.

The module provides the necessary power source for the selected transducer, providing for 2 (ICP type) or 3- wire accelerometer variants, \pm 24V proximity probe systems, LVDTs and a range of speed & temperature sensors.

Each transducer signal is buffered and available via the front panel analogue connection arrangement and a USB interface is provided for programming of the unit and storage of channel history and settings.

The unit is designed for mounting in a custom 19 inch rack assembly which also contains a dual redundant power supply option. The G3 system offers excellent channel density with up to 24 measurement channels in a 3U format.

Each channel can provide independent analogue outputs of current and voltage for DCS connection in addition to an alarm relay. Further alarm relay expansion is possible through connection to digital outputs at the rear of the module.

Machine Measurement Modes

- Absolute and Relative Vibration
- Displacement and Thrust Position
- Speed, Phase and Reverse Rotation
- Differential and Casing Expansion
- Rod Drop
- Temperature

Turbine Specialist Measurement Modes

- Shaft Eccentricity
- Differential Ramp Expansion
- Rotor / Stator Air Gap
- Overspeed

Flexible Configuration

- LPF, HPF, Tracking and Notch Filters
- Programmable Warning and Danger Alarms with Relay Logic
- Cross-Channel Voting
- Harmonic and Phase Analysis
- Programmable Transducer Supply
- Scaleable Module Hardware with plug in DSP card, up to four channels
- Dual Redundant Power Supply
- USB Programmable
- Dual Redundant Modbus RS485
- · Park and Calibration modes

DS 1221

Absolute Vibration

Selectable Measurement Modes

Overall Level, Band limited (LPF & HPF) AM1 Overall Level, Fixed HPF & Tracking LPF AM2 AM3 Overall Level, Fixed HPF & Tracking Notch AM4 Fund and Harm Magnitude & Phase

Configurable Warning and Danger, negative and positive going alarms per channel.

Measurement Units

Select from Acceleration (m/s² or g), Velocity (mm/s or ips) and Displacement (um or mil).

Select from average, rms, pk, pk to pk, pk / rms or dB referenced to 20Log₁₀(1.0V).

Filter Characteristics Low Pass

Programmable 3dB, 100Hz to 10kHz Roll off >24dB / Octave Setting resolution 1% Tracking ratio of 0.1 to 10 of incoming Tacho Tacho division (multi tooth wheel) 1 to 60

High Pass

Programmable 3dB, 0.1Hz to 100Hz Roll off >24dB / Octave Setting resolution 1%

Notch Filter

Programmable, 100Hz to 10kHz Constant Q, 35dB rejection Setting resolution 1% Tracking ratio of 0.1 to 10 of incoming Tacho Tacho division (multi tooth wheel) 1 to 60

Measurement Range, Accuracy and Resolution For AM1 & AM2 measurements

Maximum range setting

Acceleration 0 - 100.0g, $\pm 0.2\%$ typ, $\pm 1.0\%$ max Velocity 0 - 100 mm/s, $\pm 0.2\%$ typ, $\pm 1.0\%$ max Displacement 0 - 1000um, $\pm 0.2\%$ typ, $\pm 1.0\%$ max Resolution of displayed readings better than 1%

For AM3 measurements

Maximum range setting

0 - 100.0g, $\pm 1.0\%$ typ, $\pm 3.0\%$ max Acceleration 0 - 100 mm/s, $\pm 1.0\%$ typ, $\pm 3.0\%$ max Velocity Displacement 0 - 1000um, $\pm 1.0\%$ typ, $\pm 3.0\%$ max Resolution of displayed readings better than be 1% min

For AM4 measurements

Maximum range setting

Acceleration 0 - 100.0g, $\pm 2.0\%$ typ, $\pm 5.0\%$ max Velocity 0 - 100mm/s, $\pm 2.0\%$ typ, $\pm 5.0\%$ max Displacement 0 - 1000um, $\pm 2.0\%$ typ, $\pm 5.0\%$ max 0 - 360°, ±1.0° typ, ±5.0° max Phase Resolution of displayed readings better than 1%

Noise Floor

Acceleration 0.001g rms typ Velocity 0.02mm/s rms typ 0.05um pk typ Displacement

Transducer Configurations

Accelerometer

Sensitivity Range 10.00mV/g to 10.00V/g Standard ICP option +24V or -24V 3/4 - wire option +24V. -24V or +12V

Velocity Transducer Active or Passive option

Sensitivity Range 1mV/mm/s to 50mV/mm/s

Standard ICP option +24V

+24V or +12V 3/4 - wire option

Transducer Integrity

Active device range -19.0V to +19.0V Passive device O/C and S/C detection

Relative Vibration

Selectable Measurement Modes

AM1 Overall Level, Band limited (LPF) Overall Level, Tracking LPF AM2 Overall Level, Tracking Notch АМ3

AM4 Smax, Fund and Harm Magnitude & Phase

AM5 Absolute Shaft Vibration

AM6 Overall Level, dual mode eccentricity

Configurable Warning and Danger positive going alarms per channel.

Measurement Units

Displacement (um or mil), pk or pk to pk,

Filter Characteristics Low Pass

Programmable 3dB, 100Hz to 10kHz Roll off 24dB / Octave Setting resolution 1% Tracking ratio of 0.1 to 10 of incoming Tacho Tacho division (multi tooth wheel) 1 to 60 Gap Filter Fixed 3dB at 0.5Hz, 16 sample average

High Pass

Fixed 3dB at 0.8Hz, AM1 to AM5 Fixed 3dB at 0.015Hz, AM6 Roll off >24dB / Octave

Notch Filter

Programmable, 100Hz to 10kHz Constant Q, 35dB rejection Setting resolution, 1% Tracking ratio of 0.1 to 10 of incoming Tacho

Tacho division (multi tooth wheel) 1 to 60

Measurement Range, Accuracy and Resolution For AM1 & AM2 measurements

Displacement 0-1000um max, ±0.2% typ, ±1.0% max Resolution of displayed readings better than 1%

For AM3 measurements

Displacement 0-1000um max, ±1.0% typ, ±3.0% max Resolution of displayed readings better than 1%

SENTRY G3

For AM4 measurements

Displacement 0–1000um max, $\pm 2.0\%$ typ, $\pm 5.0\%$ max Phase 0 - 360°, $\pm 1.0^\circ$ typ, $\pm 5.0^\circ$ max

Resolution of displayed readings better than 1%

Smax accuracy ±5.0% max

For AM5 measurements

Displacement 0–1000um max, ±2.0% typ, ±5.0% max Resolution of displayed readings better than 1%

For AM6 measurements

Displacement 0–1000um max, ±2.0% typ, ±5.0% max Resolution of displayed readings better than 1% Low Speed mode measurement – true pk-pk

High Speed mode measurement - rms calculated pk-pk

LSM to HSM transition 0 - 50,000 rpm

Noise Floor

Displacement 0.05um pk typ

Transducer Configuration

Eddy Current / Proximity Probe

Sensitivity Range
Fixed Options
4 – wire system
Integrity window
Gap measurement

1.00mV/um to 10.00mV/um
3.94mV/um & 7.84mV/um
-24V @ 40mA max
-19.0V to -1.0V
-20.0V to -0.1V

Thrust / Differential Expansion

Measurement Modes

AM1 Relative Expansion, Y = mX+c Y is the desired calibrated measurement X is the proximity probe measured value m is a scaling factor resulting from calibration c is an offset factor resulting from calibration

AM2 Complementary Expansion, switches between 2-channels arounf collar arrangement to enhance measurement range, each channel calibrated Y=mX+c.

AM3 Dual Ramp Expansion, utilises 2-channels on a ramp collar arrangement (Chan A – Chan B) / 2, each channel calibrated Y=mX+c. Optional LVDT Case Expansion Calculation (Chan C).

Dual level, configurable negative and positive going alarms per channel.

Measurement Units

Displacement mm, um, mil or inch

Filter Characteristics

Low Pass

Measurement Filter 400Hz, 128 sample average Gap Filter Fixed 3dB at 0.5Hz, 16 sample average

Measurement Range, Accuracy and Resolution
Displacement 0–100mm max, ±0.2% typ, ±1.0% max
Resolution of displayed readings better than 1%

Transducer Configuration
Eddy Current / Proximity Probe

Sensitivity Range 0.1mV/um to 10.00mV/um Fixed Options 3.94mV/um & 7.84mV/um 4 - wire system -24V @ 40mA max Integrity window -19.0V to -1.0V -20.0V to -0.1V

Speed

Measurement Parameters

 $\begin{array}{lll} \text{Frequency Range} & 0.02\text{Hz to 20kHz} \\ \text{Accuracy} & < \pm 0.1\% \text{ of reading} \\ \text{Resolution} & < \pm 0.1\% \text{ of full scale} \\ \text{Dynamic range} & 100\text{mV pk-pk} - 20\text{V pk-pk} \\ \end{array}$

Measurement Range 0 - 50,000 rpm0 - 1000 Hz

Input Settings

Teeth Setting Range 1 – 256
Threshold mode Manual Level
Threshold detection Transition
Manual detection setting +19.0V to -19.0V

Overspeed Mode

The Overspeed mode when set shall capture maximum machine speed event following a shutdown. This positive going alarm can be allocated to an appropriate relay.

Overspeed Mode Auto / Manual Overspeed Trigger 0 – 50,000rpm

Zerospeed Alarm

The zerospeed alarm is raised when the shaft rotation drops below a set speed. This negative going alarm can be allocated to an appropriate relay.

Zerospeed detection period 1-60 seconds

Over Acceleration Alarm

The acceleration alarm is raised if the rate of change of speed exceeds the set percentage. This positive going alarm can be allocated to an appropriate relay.

 $\begin{array}{lll} \mbox{Acceleration Setting} & 1-1000\% \\ \mbox{Acceleration Start} & 100-50000 \ \mbox{rpm} \end{array}$

Transducer Configuration

Eddy Current / Proximity Probe option

Sensitivity 3.94mV/um & 7.84mV/um 4 – wire system -24V @ 50mA max
Integrity window -19.0V to -1.0V
Gap measurement -20.0V to -0.1V

Gap Filter Fixed 3dB at 0.5Hz, 16 sample average

Other Probe options

Passive Magnetic Probe 2-wire 10kOhm
Active Magnetic Probe 2-wire +12V 10kOhm
Active Magnetic Probe 3-wire +12V 10kOhm

Phase Reference (1/rev)

Measurement Mode

When a DSP channel is configured in this mode a phase reference is generated for use by other channels configured in the absolute or relative vibration modes. Up to two channels per module can be configured as a phase reference. The phase reference is selectable from any other module channel connected to the rack system.

SENTRY G3

Measurement Parameters

Frequency Range 0.02Hz to 20kHz
Accuracy < ±0.1% of reading
Resolution <±0.1% of full scale
Dynamic range 100mV pk-pk – 20V pk-pk

Measurement Range 0 – 50,000 rpm

0 – 1000 Hz

Buffered Output TTL

Input Settings

Threshold mode Manual
Threshold detection Positive Edge
Manual detection setting +19.0V to -19.0V

Transducer Configuration

Eddy Current / Proximity Probe option

Sensitivity 3.94mV/um or 7.84mV/um

4 – wire system -24V @ 40mA max Integrity window -19.0V to -1.0V Gap measurement -20.0V to -0.1V

Gap Filter Fixed 3dB at 0.5Hz, 16 sample average

Other Probe options

Passive Magnetic Probe 2-wire 10kOhm
Active Magnetic Probe 2-wire +12V 10kOhm
Active Magnetic Probe 3-wire +12V 10kOhm

Casing Expansion / Valve Position (LVDT)

Measurement Mode

Expansion or Position, Y = mX+c Y is the desired calibrated measurement X is the LVDT measured value m is a scaling factor resulting from calibration c is an offset factor resulting from calibration

Dual level, configurable negative and positive going alarms per channel.

Measurement Units

Displacement mm, um, mil, inch or % of stroke

Measurement Range, Accuracy and Resolution

Displacement 0-1000mm max, $\pm 0.2\%$ typ, $\pm 1.0\%$ max Resolution of displayed readings better than 1%

Transducer Drive

AC LVDT

Amplitude Voltage 3.5Vrms typ Frequency $3kHz \pm 5\%$

Integrity Alarms

Invalid measurement alarm is raised if reading falls outside of calibrated stroke range. Transducer integrity alarm raised on loss of valid signal from secondary winding.

Temperature

Measurement Mode

Two channels of temperature measurement are available for each DSP channel. The DSP channel is fixed to a particular sensor type.

Measurement Units

Temperature °C or °F

Measurement Range, Accuracy and Resolution

RTD -20 °C -150 °C, ±0.5% typ, ±1.0% max

Sensitivity 10mV / °C

K-type $-20 \, ^{\circ}\text{C} - 1000 \, ^{\circ}\text{C}, \pm 0.5\% \, \text{typ}, \pm 1.0\% \, \text{max}$

Sensitivity 41uV / °C Junction compensated

Resolution of displayed readings better than 1%

Integrity Alarm

Transducer integrity alarm raised on loss of valid signal from transducer.

Reverse Rotation

Measurement Mode

When two DSP channels are configured in this mode a phase reference is generated by each channel for detection in the module of reverse rotation against a multi-toothed target. Consult Sensonics for details regarding the precise positioning requirement of the probes.

Measurement Parameters

 $\begin{array}{lll} \mbox{Frequency Range} & 0.02\mbox{Hz to } 20\mbox{Hz} \\ \mbox{Accuracy} & < \pm 0.1\% \mbox{ of reading} \\ \mbox{Resolution} & < \pm 0.1\% \mbox{ of full scale} \\ \mbox{Dynamic range} & 100\mbox{mV pk-pk} - 20\mbox{V pk-pk} \end{array}$

Buffered Output TTL

Input Settings

Threshold mode Manual
Threshold detection Transition
Manual detection setting +19.0V to -19.0V

Transducer Configuration

Eddy Current / Proximity Probe option

Sensitivity 3.94mV/um or 7.84mV/um

4 – wire system -24V @ 40mA max
Integrity window -19.0V to -1.0V
Gap measurement -20.0V to -0.1V
Gap Filter Fixed 3dB at 0.5Hz, 16 sample average

Other Probe options

Passive Magnetic Probe 2-wire 10kOhm
Active Magnetic Probe 2-wire +12V 10kOhm
Active Magnetic Probe 3-wire +12V 10kOhm

Threshold mode Auto / Manual Threshold detection Pulse / Gap Manual detection setting +19.0V to -19.0V

Forward and Reverse Alarm

Two alarms are available to provide the status of the rotating shaft. Each alarm can be allocated to an appropriate relay.

Zerospeed Alarm

The zerospeed alarm is raised when the shaft rotation drops below a set speed. This negative going alarm can be allocated to an appropriate relay.

Zerospeed detection period 1 – 60 seconds

Rod Drop

Measurement Mode

The Rod Drop measurement mode monitors the position of a piston rod synchronised to a once per revolution phase reference (configured in a separate channel). Alarm functions are available for relative change in rod position from calibration point and for rod vibration. These positive going alarms can be allocated to an appropriate relay.

Measurement Units

Displacement, mm, um, mil or inch

Measurement Range, Accuracy and Resolution

Displacement 0–4mm max, ±0.2% typ, ±1.0% max Vibration 0–1000um max, ±0.2% typ, ±1.0% max

Resolution of displayed readings shall be < 1%

Average Rod Drop calculated when no sync pulse available.

Transducer Configuration

Eddy Current / Proximity Probe

Fixed Options 3.94mV/um & 7.84mV/um 4 – wire system -24V @ 40mA max

4 – wire system -24V @ 40mA n Integrity window -19.0V to -1.0V

Rotor to Stator Air Gap

Measurement Mode

The Rotor to Stator Air Gap mode monitors the stator wall gap to the rotor poles synchronised to a once per revolution phase reference (configured in a separate channel). Suitable for hydro turbine generator applications the system utilises readings from suitable capacitive displacement probes fixed at positions around the stator.

Dual level, configurable negative and positive going alarms per channel.

Measurement Units

Gap, mm or inch

Measurement Range, Accuracy and Resolution

Gap 2–32mm, ±1.0% typ, ±2.0% max Resolution of displayed readings shall be < 1%

Gap measurement provided for average, maximum and minimum with pole number for max and min.

No. of Poles or samples per revolution, 2 to 128.

Transducer Configuration

Capacitive Proximity Probe

Sensitivity 333mV/mm

4 – wire system +24V @ 150mA max

Integrity window 0.1V to 9.9V

Common Alarm Features

Parameter Alarms

Two parameter alarms (A1 and A2) are available per channel, programmable within the set measurement range. Hysteresis, Latching mode and Delay are configurable.

Hysteresis 1 to 10%, resolution 1%
Delay 1 to 60s, resolution 0.1s
Mode Latching or Fleeting

For displacement measurements (e.g. thrust, differential expansion, air gap, etc.) each parameter alarm can be configured for both positive and negative going values for window alarming.

For speed measurements each parameter alarm can be configured for either positive or negative going.

Integrity Alarms

The A3 and A4 alarms are allocated to transducer integrity and channel / gap integrity respectively. Hysteresis, Latching mode and delay are configurable.

Hysteresis 1 to 10%, resolution 1%
Delay 1 to 60s, resolution 0.1s
Mode Latching or Fleeting

Relay Alarms

A single relay is available per channel; this can be allocated to an alarm or group of alarms as required and configured for energised or de-energised to alarm.

For further relay expansion eight channels of Alarm I/O are available at the rear terminals for allocation to available alarm parameters.

Summary Alarms

A single open collector line at the rear terminals is allocated to a 'First up' Alarm for identification of the primary channel alarm in the system rack.

Channel Defeat

Individual channels can be configured to defeat parameter alarms in the event of an integrity alarm. During defeat all other channel interfaces operate as normal.

Alarm Historian

All alarm events are stored and time stamped for later access through the front panel display and drive facility. Capacity to store 100 events with a download facility.

Alarm Reset

All latched alarm events or individual channel latched alarms can be reset through the front panel display and drive facility.

Park Enable

The Park function permits the analogue outputs to be forced to a preset value in the event of a transducer alarm (user software control only)

Analogue Outputs

Current and Voltage Outputs

Two analogue outputs are available per channel, configurable for either 4-20mA or 0-10V.

Accuracy $\pm 0.5\%$ of range Amplitude Linearity $\pm 1\%$ of range

The analogue output is set across the measurement range as standard.

Buffered Outputs

For each channel the raw transducer signal is buffered to both the front panel and rear terminals.

Frequency Range DC to 10kHz Accuracy ± 1%

For speed and timing measurement modes a TTL signal only is available at the rear terminals.

Common Rack Features

Trip Level Multiply or Divide; Module detection of this common rack facility will multiply or divide alarm levels when configured for vibration or speed channels respectively.

Calibration; Module detection of this common rack facility will force the analogue outputs to a preset value. Alarms can be defeated in this mode if required.

Reset, Module detection of this common rack facility will reset all active latched alarms.

Set Up Disable; detection of this common rack facility will disable changes via the front panel user interface and disable the USB interface.

Tacho 1 & 2: speed and phase marker channels can output tacho signal to backplane for use with other measurement channels

Front Panel Facilities

Colour LCD display Size 43mm x 57mm

Resolution 240 x 320 pixels Backlight Timeout Function

Display Modes 4 Channel Bargraph

4 Channel Traffic Light Measurement + Gap

Alarm Matrix

Historian Single Channel Trend

500,000 points per channel Downloadable to .csv format Alarm Log 500 entries

FFT Single Channel FFT, 512pts

LED Indicators OK Active Green ALM Active Red

ALM Active Red
TxRx Active Green

Communications USB Type B Interface

Windows XP compatible

Navigation Menu Button
Drive Button

Buffered Outputs SMB Jack 75 Ohm

Communications

USB interface for front panel user set up RS-485 Dual Redundant Modbus slave at rear terminals

Power Supply

Module Supply Voltage +18V to +28V
Module Power Consumption 15W typ 20W max

Rack Supply Voltage 90 - 264Vac 50/60Hz Rack Power Consumption 90W typ 120W max

(with 6 modules)

Mechanical

Module Dimensions 3U x 12HP x 220mm

Module Mass 0.9kg

Temperature

Operating -30 °C to +65 °C Storage -30 °C to +85 °C

CE Marking

EN55011 Heavy Industrial Standard conducted & radiated emissions

EN61000-3-2:1995 EN61000-3-3:1995

EN55014 Heavy Industrial Standard Immunity

EN61000-4-2:1995,

EN61000-4-3:1996,

EN61000-4-4:1995,

EN61000-4-5:1995,

EN61000-4-6:1996, EN61000-4-8:1993,

EN61000-4-11:1994

Low Voltage Directive EN60950:1992+A1+A2+A3+A4

SENTRY G3

Software Facilities

Front panel permits display of channels in various modes.

Bar Graph with colour coded alarm status

Alarm page with colour coded alarm status

FFT for dynamic channels

The Sentry G3 *User interface* provides complete set up and control of all module channels. Uploading measurement algorithms to the DSP card, configuring for sensor input type, measurement mode, alarm alarm levels and analogue outputs.

Overall user panel provides intuitive status of the module measured values and alarm status.

The channel measurement panel is the same format for all measurement algorithms, providing a common interface for the detailed configuration of the channel parameters.

If you require assistance with any questions please contact your local Sensonics representative

Sensonics Ltd Northbridge Road Berkhamsted Herts, HP4 1EF United Kingdom Tel: +44 (0)1442 876833

Fax: +44 (0)1442 876833 Fax: +44 (0)1442 876477 www.sensonics.co.uk